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File Compression using Singular Value Decomposition  

      The field of numerical linear algebra primarily involves solving problems involving matrices.  An 

important result of numerical linear algebra is a matrix factorization method called singular value 

decomposition or SVP.  This discussion will cover SVP generation along with important ‘real world’ 

applications.  

        Singular value decomposition is an integral part of many computer vision and image processing 

applications.  SVD provides tools to create algorithms used in: motion planning for robotics, video 

tracking, facial and optical character recognition. SVD is also used in many image processing 

algorithms dealing with topics such as: photo enhancement, satellite imagery, image compression and 

medical imagery.    

     The purpose of SVD is to break down a given matrix into three simpler matrices, two orthogonal 

and one diagonal.  The three resulting matrices have useful properties.  

Definition: Any       matrix can be factored as        where   is an       orthogonal matrix, 

  is an       orthogonal matrix, and   is a       matrix with entries:                     down 

the main diagonal and zeros elsewhere.   

                                                                                                                          
                        

                                                       
       

    
    

          

        
        
    
        

   

 
 
 
 
  

 

  
 

 
  

  
 
 
 

 

     

     The      form of A and its properties make all of the applications mentioned earlier possible.  

This discussion focuses on the properties of      used for minimizing data transfer and storage.                                         

Computers store images in a matrix where each value represents pixel brightness.  Figure two below 

Fig. 1 

EEE-5114 Engineering Analysis  

Midterm Exam 3: Numerical Linear Algebra 

Tom DesRosiers 12/9/2013 

 



DesRosiers 2  
 

shows a 3 x 3 matrix with a value of 0 for white, 0.5 for gray and 1 for black [1].   Color images are 

stored as three separate matrixes containing pixel brightness values for red; blue and green (see Fig. 3).  

Storage requirements for an m x n matrix is m*n [1].  Memory requirements increase exponentially 

with the matrix size.  The purpose of SVD when applied to image processing is to reduce the storage 

memory requirements.   

 

 

 

 

     SVD allows for a matrix to be rewritten as a sum of rank one matrices.  This can be written as:   

                                      
                        

                                                   
  

      

Since    are ordered from biggest to smallest a sufficient approximation to the oringal matrix A can 

generally be derived by dropping some of the terms at the end of the                        
  

      expansion [2].  

Let k be the number of terms needed to create a sufficient representation of A.  The   matrix Ak can 

now approximate A by the partial sum:                                 
  

       The SVD partial sum requires 

the storage of just the values     
                                                                                                       to represent 

A[2].   

     The amount of memory required by an SVD approximation of value k for an m x n matrix A  is 

described by the relationship                   .  The linear SVD relationship is much 

more desirable versus the exponential relationship of the orginal matrix [2].  When bandwitch and /or 

memory limitiations are an issue it’s easy to see why  singular value decomposition is used.  

 

Fig. 2 

Fig. 2.Cooper, Ian & Lorenc, Craig.  Image. SVD_Slideshow.pdf  13. Dec 

2006. 8 Dec. 2013  

<http://online.redwoods.edu/instruct/darnold/laproj/fall2006/iancraig/

SVD_Slideshow.pdf> 

Fig. 3.Cooper, Ian & Lorenc, Craig.  Image. SVD_Slideshow.pdf  13. Dec 

2006. 8 Dec. 2013  

<http://online.redwoods.edu/instruct/darnold/laproj/fall2006/iancraig/

SVD_Slideshow.pdf> 

http://online.redwoods.edu/instruct/darnold/laproj/fall2006/iancraig/SVD_Slideshow.pdf
http://online.redwoods.edu/instruct/darnold/laproj/fall2006/iancraig/SVD_Slideshow.pdf
http://online.redwoods.edu/instruct/darnold/laproj/fall2006/iancraig/SVD_Slideshow.pdf
http://online.redwoods.edu/instruct/darnold/laproj/fall2006/iancraig/SVD_Slideshow.pdf
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     The following example illustrates how         is generated.  The SVD algorithm is applied to 

the matrix     
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(1) Calculate            . 

                   
  

   
     

  
     

  
                      

   
  

    
   

     
  

   

(2) Find eigenvalues for       
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(3) Find values of matrix    . 

The singular values of     represented by     are related to the eigenvalues by the 

relationship:          .  The singular values for     are:  

                  and                   therefore:       
   

    
     

(4) The columns of   are the eigenvectors of    . 
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(5) The columns of   are the eigenvectors of    . 
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We now have all of the values to complete the SVD factorication for      
  

   
 .   The final 

SVD factorization is:    

                                                                                   
      

                 
       

    
    

          

        
        
    
        

   

 
 
 
 
  

 

  
 

 
  

  
 
 
 
 

                                                                                  
   
  

                          
   

    
                         

        

         
  

   can now be represented as a sum of  rank one matrices: 
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     MATLAB makes it easy to generate the SVD of a matrix.  The following code generates the SVD 

for the example matrix above:   

MATLAB CODE:                                                                     OUTPUT:  

 

 

 

  

                                                              

 

 

 

 

 

      The example above is a good example of  how the SVD of a matrix is calculated, however, because 

of it’s small size it is not very useful for showing how SVD can be used in image compression.  

      The following MATLAB example calculates the SVD of an image file and then displays the images 

created from the terms of the summation:                              
  

    .  A listing of the code can be found at 

the end of this report [3]. 

     

 

 

A = [2 2;-1 1]   %Input A 

[U,S,V] = svd(A) %Generate SVD decomposition for A 

  

B = U * S * V'   %Optional: Show that SVD Equals  

                 %the original Matrix A  

 

 

 

 

A = 

     2     2 

    -1     1 

U = 

   -1.0000    0.0000 

    0.0000    1.0000 

S = 

    2.8284         0 

         0    1.4142 

V = 

   -0.7071   -0.7071 

   -0.7071    0.7071 

B = 

    2.0000    2.0000 

   -1.0000    1.0000 
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ORIGINAL IMAGE 



DesRosiers 7  
 

 

 

 

 

 

 

The following chart shows the data usage for increasing values (modes). 

Mode Required Pixels % Original 

10 7,310 5% 

40 29,240 22% 

60 43,860 33% 

80 58,480 44% 

100 73,100 55% 

Original 133,189 100% 

 

From the chart it’s easy to see that a significant amount of storage space can be saved if you are willing 

to sacrifice a level of image resolution.   

      Singular Value Decomposition is an example of a practical application of numerical linear algebra.  

SVD applications span a wide variety of topics ranging from social network analysis to geology [4].  

The importance of SVD and numerical linear algebra will only increase in the future.   

 

 

 

 

Fig. 4 
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MATLAB Code for SVD program:  

This code can be found at:  htp://www.ldeo.columbia.edu/~mspieg/e3101/Matlab/SVD_fun2002.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%   matlab script to calculate the SVD of an image 

%   This script first reads in an image (a detail of an etching by Durer of a 

%   magic square) and plots it. 

% 

%      It then takes the SVD of the  image and calculates the 

%     spectrum of singular values.  Note that only the first 50 or so of the 

%     singular values are large (and really only the first 4 or so).  Because the 

%     high singular values are negligible, we can reconstruct much of the image just using 

%    the first 50 "Empirical orthogonal Functions" (which are just the first 50 Eigenvectors 

%    in V.  This script builds up the reconstruction one EOF at a time. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all; 

close all; 

%%%%%% 

%  load and display the original image 

%%%%%% 

load detail 

[m,n]=size(X); 

imagesc(X); colormap(map); axis image; axis off; 

set(gca,'fontweight','bold','fontsize',[14]); 

title(sprintf('%s, %dx%d image',caption(1,:),m,n)); 

 

%%%%% 

%  now calculate the SVD of the image 

%     and set VT=V transpose 

%%%%% 

 

[U,S,V]=svd(X,0); 

VT=V'; 

 

%%%%%% 

%  plot the spectrum of the Singular values sigma_1-sigma_m 

%%%%%% 

 

figure 

semilogy(diag(S),'b-o'); 

set(gca,'fontsize',[16],'fontweight','bold'); 

title('Singular Values'); 

grid;  

% 

% okay now do it as sums of rank 1 matrices 

% 

figure 

i=1; 

Xi=S(i,i)*U(:,i)*VT(i,:); 

imagesc(Xi); colormap(map); axis image; axis off; 

set(gca,'fontsize',[16],'fontweight','bold'); 

title(sprintf('EOF reconstruction with %d modes',i)) 

disp('Hit return for more modes') 

pause; 

for i=2:50 

  Xi=U(:,1:i)*S(1:i,1:i)*VT(1:i,:); 

  imagesc(Xi); colormap(map); axis image; axis off; 

  set(gca,'fontsize',[16],'fontweight','bold') 

  title(sprintf('EOF reconstruction with %d modes',i)) 

  pause; 

  drawnow; 

end 

% 

% and show for 100 and 200 modes 

% 

figure 

i=100; 

http://www.ldeo.columbia.edu/~mspieg/e3101/Matlab/SVD_fun2002.m
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Xi=U(:,1:i)*S(1:i,1:i)*VT(1:i,:); 

imagesc(Xi); colormap(map); axis image; axis off; 

set(gca,'fontsize',[16],'fontweight','bold'); 

title(sprintf('EOF reconstruction with %d modes',i)) 

figure 

i=200; 

Xi=U(:,1:i)*S(1:i,1:i)*VT(1:i,:); 

imagesc(Xi); colormap(map); axis image; axis off; 

set(gca,'fontsize',[16],'fontweight','bold'); 

title(sprintf('EOF reconstruction with %d modes',i)) 
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